JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 1

DISPERSION OF AN INSTANTANEOUSLY HEATED MATERIAL AND DETERMINA-
TION OF ITS EQUATION OF STATE FROM THE PRESSURE AND MOMENTUM
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The dispersion of a material heated (for example, by laser radiation)
"instantaneously, " i.e., in a time much smaller than the characteris~
tic dispersion time, is considered. It is shown that heating of a layer of
material even to internal energies much smaller than the heat of evap-
oration can result in expulsion of part of the material due to the inter-
action of the rarefaction waves and to the formation of negative stress-
es. The dependence of the momentum on the applied energy and ther-
modynamic properties in the event of this "split-off” effect is deter-
mined for the cases of uniform and nonuniform heating. It is suggested
that instantaneous heating of a material layer be used for determining
its equation of state for densities close to the solid-state density.

§1. Several papers concerning the thermodynamic
properties of solids and liquids at high pressures and
temperatures have appeared recently. A high propor-
tion of studies in this field have been concerned with
the equation of state of a material under compression
and heating in a powerful shock wave; the relationship
among the parameters characterizing the state (i.e.,
the pressure p, the energy e, and the specific volume
v) was established in these studies from the shock
adiabats determined by various methods [1, 2]. By the
specific nature of shock methods, high pressures and
temperatures entail increases in the density of the
material, It is also of interest, however, to investi-
gate the thermodynamic functions at high pressures
and temperatures, but at normal density p; (or at
nearly normal density). Such states can be achieved
by "instantaneous" heating of the material (p = p;) and
its subsequent dispersion (p < py).

In fact, if the energy release time 7 is smaller than
the characteristic time of change of the temperature
and density during hydrodynamic motion (from now on
we assume that heat conduction is negligible), then the
density p, of the material remains constant during
rapid heating and even after it. At this density py (or
at one close to it) the energy ey of "cold" compression
or expansion and the corresponding pressure py are
small as compared with the "thermal® energy et and
the "thermal™ pressure pp. The pressure produced by
heating is related to the energy released by the expres-
sion

P =p,=pe, (y — 1) = pge (y — 1), (1.1)

where vy is the effective ("integral™) adiabatic exponent.
If it is possible to measure the pressure p, then vy can
be found from relation (1.1) provided one knows the
energy concentration f(m) in a unit mass with the La-
grangian coordinate m,

"nstantaneous™ energy release in a material can be
produced, for example, by radiation from a Q-switched
pulse laser. In this case the energy concentration f(m)
can be found from the known absorption # of the ma-
terial (or from its known absorption function % (eT, pg))
on the basis of the energy applied per unit surface,

m

f(m)= Enexp (— S %dm). (1.2)
0

The energy f(m) released per unit mass is easiest
to find when % = const = ®, where % is the absorp-
tion of the material in the "cold" state, Let us find the
characteristic mass mgy = 1/%g of the heated material.

For sufficiently large values of E/m, the energy
concentration exceeds the heat of evaporation Q of the
material in the surface layer,

f(m) = f(O)=E / my.

mgmm

For large values of EAng this is also true for the
deeper layers,

m, > my, Q = f(m) <E/m,.

By varying the energy E applied per unit area (this
can be readily accomplished, for example, by suitably
adjusting the laser beam focusing at constant energy),
one can investigate a very interesting range of (eg, o)
values, i.e., e ® Q, p ™ py, i,e., the range in which
determination of the equation of state by theoretical
methods is very difficult, The quantity » in this range
remains constant if absorption occurs on the molecular
or atomic level, and if considerable thermal motions
of the molecules or atoms, or the excitation of their
internal degrees of freedom, do not as yet affect %,

The simplest picture of heating and subsequent dis-
persion occurs if the radiation-heated layer is "rans-
parent, " i, e., if its thickness xy < x; = my/oy so that
the layer is heated practically uniformly. The condi-
tion of "instantaneousness" is fulfilled for characteris-
tic thicknesses x, * c7, where ¢ is the speed of sound,
i.e,, if the quantity x, satisfies the latier restriction
for the given value of 7. For values of ¢ close to the
speed of sound ¢ in the "cold" state, i.e., for c on the
order of 3 x 10° em/sec and 7 ~ 2 x 1078 sec (a typical
radiation time for a Q-switched pulse laser) this condi-
tion is xp > 6 X 107% cm. Thus, the radiation path x; >
# xp must not be too small, This condition is not ful-
filled, for example, for metals acted on by radiation
in the optical range {(xg ® 107° cm). However, there is
a sufficiently broad range of materials which do satisfy
this condition. Furthermore, the depth to which the ra-
diation penetrates can often be varied by altering the
color of the material, .

§2. It is sometimes more feasible to determine the total reactive
momentum I instead of measuring p directly. Analysis of the depen~
dence of the momentum I on the incident energy E and study of the
dispersion pattern of the material can provide certain information about
the state of the latter.

Let us consider a straightforward evaluation of the momentum for
the case where the specific energy (i.e., the energy per unit mass) is
much larger than the heat of evaporation Q, and where the heated ma-
terial can be considered as a gas. If we disregard energy redistribution
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among the particles, we can say that all of the energy E/m, applied to
a unit mass, with the exception of the heat Q expended on the disrup-
tion of molecular bonds, is converted into the kinetic energy of disper-
sion u2/2, where u is the velocity of the material (equal for all the par-
ticles), and that the mechanical recoil momentum during dispersion of
the uniformly heated material of mass m, is given by the relation

I'=um,=m, VZ(E]mg)— Q)=
= (m, [ mo) V 2Eme 1 —fs). (2.1)

Here and below the dimensionless parameter fs = Qmy/E. Consider-
ation of energy redistribution over the particles during dispersion due to
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the work performed by some of the particles on others and allowance
for the consequent change in the momentum I gives rise to a coefficient
x in front of the right side of formula (2.1). In the case of adiabatic
dispersion of a 1ayer‘uniformly heated over its mass [3] this coefficient
depends on the adiabatic exponent y, but this dependence is a relatively
weak one; thus, as the exponent y changes from 1 to 3, the coefficient
X changes from 0.798 to 0.865. As we infer from the solution of the
problem of dispersion of a gradually ("slowly") heated material [4], the
momentum can also be estimated from formula (2.1), but the coeffi-
cient ¥ turns out to be completely independent of the adiabatic expo-
nent y and is equal to (2/1r)l ~ 0.798 in the case of uniform heating,

From this it follows that in investigating the magnitude of the mo-
mentum arising with concentrations of released energy which are higher
than the heat of evaporation of an instantaneously or gradually heated
layer it is difficult to obtain information about the thermodynamic state
of the material. As will be shown below, the momentum can arise for
energy densities comparable with, and even much smaller than, the
heat of evaporation Q, If ftm) =Q or ftm) <Q, the material cannot
be regarded as an ideal gas, and the estimate of the mechanical mo-
mentum given below implies that its value is highly sensitive to the
adiabatic exponent y, the speed of sound ¢, and their dependences on
the thermal energy e, and that the role of y is more significant than
in the case ftm) > Q.

We note that for E = myQ formula (2.1) yields a momentum of zero.
This is because in deriving (2.1) we assumed that expansion of the ma-
terial following heating presupposed expenditure of energy sufficient to
break all the intermolecular bonds determining the structure of the
solid. However, the condition fim) = Q does not mean that the mate-
rial has not evaporated. It simply means that it cannot evaporate com-
pletely. Conversely, the inequality f(m) > Q does not mean that the
material has evaporated completely, since relief can involve partial
condensation, and the heat expended can be smaller than Q.

§83. Let us consider the following gasdynamic pic-

ture which can lead to dispersion of the material and

to the formation of a mechanical momentum even in
total absence of evaporation, i.e., for f(m) € Q.

"Instantaneous" heating uniform over the mass m,
produces the pressure p defined by relation (1.1). If
the surface-heated material is bounded by a vacuum on
one side (m = 0) and by cold material on the other (m =
= m,), then rarefaction waves begin to move (at the
initial instant) from the above boundaries into the ma-
terial. These waves meet inside the heated layer (if
the cold and hot layers are of the same material, they
meet at the center); moreover, a compression wave
begins to move into the interior of the material.

Let us consider the picture of this process. Figure
1a shows the pressure distribution at the initial instant
(p = pg in the 0 = m = m,. range). Figure 1b shows that
the heated material has begun to be relieved by the
rarefaction waves ¢y and ¢,, and that the shock wave
@3 s propagating in the cold material. If E «mQ,
then the amplitude Ap of the resulting waves is smaller

‘than pocg, since the ratio Q/c# is on the order of unity.

This allows us to use the acoustic approximation,
Then, if we assume that the speed of sound remains
constant throughout the heating process, we can write

Ap = peeyhu. (3.1)

Let us introduce the characteristic velocity u; =
= pp/peco. Applying formula (3.1) to the waves ¢, ¢,
and @3, we find that in domain 1 the material is re-
lieved (p = 0) and moves leftward with the velocity u =
=~u,. In domains 2 and 4 it is stationary, while in do-
main 3, where p = py/2, its velocity is u = uy/2. The
waves ¢ and ¢, move towards each other with the ve-
locity ¢y They meet at the center of the hot layer at
the instant ty = xo/2c¢y. The material in domain 2 (Fig.
1c¢) now moves with the velocity u = —uy/2, and is at
the pressure p = —py/2. If the resulting stress exceeds
the dynamic tensile strength ¢ of the material, then
rupture occurs, and the entire domain 1, i.e,, the
layer of mass m,/2, splits off with the velocity u =
= —U,, producing the momentum

MpPo Py

T~ g, _ bz

5T oo e (3.2)
Taking a different approach (i.e., assuming that
the two halves of the layer are acted on by the pressure
po throughout the time tj), we obtain the same expres-
sion for I. Making use of the relationship between the
initial pressure p; and the initial volume energy con-
centration Eg /g defined by Eq. (1.1), we find that the
momentum I depends on the energy E, released in the
layer x,. by the expression

[_EBa=0z _EG—1) 3.3)

20y e 2¢o

If the material is not uniformly heated, i.e., if the
total mass of the layer is M ® my or M > my, then, by
virtue of the rapid (exponential for » = const) decrease
of energy with depth, we can schematize the phenome-
non and assume that in the material in the layer my =
= my is heated, and that this layer contains all of the
energy E, while the layer m > m; is absolutely cold.
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Then Ep = E, and Eq. (3.3) implies that the momentum
does not depend on the depth of penetration x; of the
radiation.

If there is no split-off, the picture becomes that
shown in Fig. 1d. Here the shock wave (p = py/2, u =
= uy/2} is followed by the rarefaction wave (p = —py/2,
u=—uy/2) which ends in a jump after which p =0, u =
= (. Since the width of the "positive" phase domain
(u > 0) and the width of the ™egative" phase are equal
to each other and to the initial thickness x,. of the
heated layer, it follows that the total momentum of the
system is zero.

Recalling that Q is of the same order of magnitude
as c¢f and introducing A according to the relation cf =
= AQ, we can rewrite Eq. (3.2) in a form which differs
from Eq. (2.1) only by a coefficient dependent on fg,

I =" Y2Em, 1L

my 9 Vm ’ (3.4)

From Eq. (3.4) we infer that for fq = 1 the momen-
tum is not equal to zero as Eq. (2.1) would indicate.
The momentum decreases slowly with increasing fg.
As we see from Eq, (3.3) and Eq. (3.4), the momen-
tum depends rather strongly on v.

§4, Formulas (3.2) and (3.3) can be refined by tak-
ing account of the changes in the speed of sound in the
material as it is heated, The speed of sound in some
materials for p = p; and for heats on the order of Q has
been measured directly [1, 2, 5, 6]. These data were
obtained by shock wave compression of a material
whose density has been reduced in advance (i.e., a
material in porous or powder form). The quantity y
was also determined in these experiments, Since it is
difficult to produce high-velocity shock waves in such
experiments, the latter are few in number and have
been performed for a small range of materials only.
Let us therefore estimate the changes in the value of
¢ with heating,

in general form, the equation describing both the
condensed and the gaseous states of a material, as
well as its "intermediate® states, can be written as

P = Px + pry Pr=(1v—1)per

ex(0) = — { pedv = § (p] 02 dp.

T

():ex—{'ew

(4.1)

o

)

Here y(e, p) is the effective adiabatic exponent;
px: P and €y, e are the "elastic" and "thermal®
components of the pressure and energy.

Let us make the simplifying assumption that v =
= vy(s8), i.e., that v does not vary or varies little along
the isentrope. As we see from [5, 6], the existing ex~
perimental findings do not contradict this assumption.
The equation of state of the material can then be writ-
ten as

P =px, (0] )Y F(s) = ps + (p/ pg)"ps° (4.2)
Here F and p% (the thermal pressure for p = pg) are
functions of the entropy s.
Differentiating Eq. (4.2) and making use of relation
(1.1), we obtain the following expression for the speed
of sound:

dp> aPx (dpr) pr
2 . (2P o = ¢4? =
¢ (olps o T\ ) G+ T

= +rir— e = {1+ L0 4

According to this expression the speed of sound in-

creases with heating, Forep=Q, if y=2 and A= 1,
the speed of sound increases by about V3 times. Taking

JEI RN
E=I/)5
$ / 5 //

i

125,
[17)

Zr

U

dm $
Am_y4t
dat | ﬁ-zﬂ,.
g 9.5 10
Fig. 2

account of relation (4.3), we can rewrite formula (3.2)
for the momentum as

y—t E = _ y—1)E,

I = 2 & X9 __200 VW . (4.4)

For large heats, when E » mQ, i.e., when fq <1,
this formula can be written as

my VT'_1 DY AP By
[ = 2’%—0“_‘——*‘_’/2_7 ]/ZEmO = EO‘XO VzEmO .

(4.5)
Expression (4.4) differs from Eq. (2.1) (for fs <« 1) only by a numeri-
cal coefficient x, of order 1/2. The difference can be explained as
follows:. in deriving formula (4.4) we did not allow for the fact that
upon encountering the rarefaction waves the pressure drops to zero or to
negative values which do not result in immediate rupture of the layer,
i.e., the rarefaction waves (which are not acoustic) are of finite width,
and that the layer heated to the "gaseous” state is dispersed completely,
instead of one-half of it splitting off as in the case of low heats. We
note that if the heated material is bounded by cold, but more rigid,
material, i.e., if the displacement of the boundary is negligible, then
the entire heated layer “splits off, " and the coefficient in Eq. (4.4) and
Eq. (4.5) must be doubled. Numerical computations carried out by the
method of characteristics for the preblem of dispersion of a uniformly
heated layer bounded by a vacuum on one side and by cold material of
the same density on the other showed that with heating to f{m) ~ Q
the additional momentum following encounter of the rarefaction waves
at the center is negligible prior to the instant, while the point at which
the pressure is p = 0 or p = —o is close to m;/2. Figure 2 is a general
diagram showing interaction of the centered rarefaction waves, forma-
tion of the shock wave, and "split-off" in the specific case er} =Q,
A =2, y =2 Here A is the point where the pressure p = 0 is first
achieved; R is the boundary of the rarefaction wave; S is the shock
wave; 0 < m/my < 1 isthe hot layer; m/m, > 1 is the cold layer;
m = 0 is the vacuum; L is the layer boundary. In carrying out such
computations one must, of course, choose a specific form of the equa-
tion of state.

We assumed that py(p) is given by the expression

n K
P (9) = poce? =2 (y L) @)

n—=Fk o
We therefore assumed that the repulsive and attrac-
tive forces are described by power functions. The
elastic energy can then be written as
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yr—1

_ Yt
ex(p) = COz(n—1 k——l)'

From Eq, (4.7) we see that the binding energy Q of
the solid (ex for y — 0) is related to cg by the expres-
sion

(4.7)

he @ n—k

QT D=1 (4.8)

Using the Eq. (4.8), we can determine the relation-
ship between n and k from the known value of A. The
values of n and k can also be determined separately,
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for example, from the known shock adiabat py(p), by
virtue of the condition of its tangency to the cold com-
pression curve pg(p) and the coincidence of their sec-
ond derivatives (for p = py). We note that it is not al-
ways possible to satisfy this condition and condition
(4.8).

Experimental data can usually be represented as
the linear dependence of the velocity D of the shock
wave front on the velocity u of the material behind the
shock wave [1, 2],

D = ¢y + pu.

If we assume that relation (4.9) is valid for any u/cg,
we can express the adiabat in the form

4.9)

poco® (¥ — 1)y

PNT (=D (4.10)

From Eq, (4.6) and Eq. (4.10) we infer that for y =
=1
a? pN
(/l/

dpy de 2
dy - dy = PoCp”s

2(28 — 1) pace?

d'py

s (4.11)

— (- k— 1) poce?.

Thus, n+ k=438 — 1, Settingn=3 and k=2, we
find that A =2 and 8 = 3/2, which are typical average
values for a broad range of materials, For n= 3 and
k = 2 we have \

Px = pots” (1 — ¥, Cx = 1/2 ¢y’ (y — 1%, (4.12)

We note that near y = 1 the elastic energy €y can al-
ways be written in the form (4.12), since it has a max-
imum at the equilibrium point. In [7] it is shown that
the coefficients of the subsequent terms of the expan-
sion in (y — 1) are small, Equation (4.12) is sufficient~
ly typical, and the qualitative conclusions which can be
drawn from it are valid for other functions px(p) as
well.

From Ed. (4.12) and Eq, (4.10) for p ps, i,e., for
¥y = ¥g. we obtain

7 (ps) = 2 [—5‘5;’7 +1. (4.13)

Here pg is the denmty of the material at the shock
wave front (at the instant when it passes through the
given particle) which is related single-valuedly to the
entropy s.

This expression was already used by Koxyavov [7],
who assumed, however, that v = y(p), i.e., that the
function y(p) is of the same form as the function y(og).
If this were true, then for p = p, we would have the con-
stant value vy = vy, regardless of the amount of heating
(according to Eq. (4.13) we have v, = 2,5).

It is clear, however, that vy decreases both with
heating of a material at constant density and with heat-
ing along the shock adiabat, Both v = ¥(s) and ¥ = ¥(pg)
do, in fact, conform to this condition. It is clear that
strong heating (when pg ® py) corresponds to the limit-
ing value of v, on the shock adiabat, According to
Eq. (4.10), for g= 3/2 the limiting compression is
Ps = 3pp, while according to Eq. (4.13) we have vyx = 2.
We note that for u = c; the linearity of D(u), i.e., the
linearity of Eq. (4.9), can, in fact, be violated, and
the limiting value of yx can differ from the value of
determined on the basis of 8. There is not enough in-
formation available on the thermodynamic states of
various materials at p = p; to enable us to determine
the true function y(py, s) and to establish to what ex-
tent this function differs from (4.13). In analyzing the
equation of state we shall make one further simplifying
assumption, i.e., that y = const. For vy =2 and py(p)
as given by Eq. (4.12), the shock adiabat assumes a
form which differs slightly from Eq. (4.10) for g = 3/2,

(4.14)
The function D(u) corresponding to Eq. (4.14) (the

solid curve in Fig. 3) is, as before, close to straight
line (4.9) with g = 3/2 (the dashed curve in Fig, 3),
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Thus, the equation of state (px(p)) as defined by (4.12)
used in actual numerical computations of hydrodynamic
motion, and the value of vy given by Eq. (4.13), or v =
= const = 2, yield shock adiabats of fairly typical shape,
so that the conclusions drawn from these computations
must be sufficiently general.
§5, The solid curves in Fig, 4 represent the
shock adiabat 8 (4.14) and the isentropes I (4.2) for
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v = 2; the dot-dash curves represent the constant
thermal energy eT. Extension of the isentropes
below the boundary of the two-phase domain F are in-
dicated by the broken curves (A is the critical point).
The "cold" curve pg(o) has a minimum point, The cor-
responding values of py iy and pmin can be found (with
py () defined by Eq. (4.6)) from the condition

(k

Omin == Qo | 7~ s

1/(nk) 2 7 o \kf(n-k)
> Dz min = "'E)")ni‘(;) (5.1)

which for n = 3 and k = 2 yields the expressions

Omin = /30, Pmin = — */27 PoCo®. (5.2)

The above value of py,ip yields the theoretical ten-
sile strength o of the material. As we see, o is ap-
proximately one order smaller than pycl. The real
strength o of the material is, of course, considerably
smaller than o,

The above equation of state has a curve of metasta-
ble states (dp/dp = 0 for e = const is represented by
a broken curve in Fig, 4). This curve intersects the
straight line p = 0 for the first time at p = py; (for p >
> pyp the curve of metastable states lies in the domain
p < 0},

1
k1P

Pp= Po (m}

For n = 3 and k = 2 the quantity pp; = po/2. As we
see from formula (4.2) and Fig, 4, the isentrope which
passes through this point emerges from the point p = p,
and ep = Q = ¢f/2 (for n = 3 and k = 2 we have A = 2),
For p=0 and p= p  the "cold" energy e, = Q/4, and
the thermal energy e = Q/2, while, as noted above,
the initial thermal energy (for p = p; on the same isen-
trope) is e, = Q.

Thus, if the material cannot withstand negative
stresses, then the energy expended on adiabatic relief
of a given particle prior to rupture of the material (p =
= 0) is much smaller than Q (for p > Py Ot e"T £ Q).

(5.3)

20500,

-00250

Figure 4 shows the boundary of the two-phase do-
main. In the above determination of the point of inter-
section of the isentrope with the straight line p = 0 and
in our numerical computations of the hydrodynamic mo-
tion we assumed that the isentrope can be extended all

the way to the curve of metastable states or p = 0 with-
out taking cognizance of the fact that the end point lies
in the domain of a possible two-phase state in which
the material can experience stratification into two
phases (in equilibrium), i.e., that the liquid is super-
heated in some domain. However, this is unimportant
from the standpoint of energy expenditures (this is
clear from Fig. 4), so that the major portion of the
work of expansion and overcoming the cohesive forces
is expended below the line delimiting the two-phase
domain, This is valid only for isentropes which enter
the two-phase domain far from the critical point on the
boiling curve. This is because fulfillment of the condi-
tions of thermodynamic equilibrium of the vapor and
liquid means that the slope of the isentrope changes in
this domain.

Is

Fig. 6

The boundai‘y p= pg(v) of the two-phase domain can
be found from the ordinary condition. It is the line
connecting the points which satisfy the condition

R p(v, e; = constydv = P (22 — ).

Ty -

(5.4)

Here p_ is some pressure, and vy and v, are points
on the boundary of the two-phase domain, The critical
point is given by the ordinary relation

:ll—zz 0, % =0 for ep = const,
This implies that
= ko
e Ll = I

for vy = const.

Letn=3 and k = 2, Then p = py/3 and py = pecf/27.

The domain of values p, p close to the critical point
is shown in greater detail in Fig. 5. Here I is the isen-
trope and F is the boundary of the two-phase state do-
main; the dot-dash curves represent states with an
equal liguid content in the equilibrium vapor-liguid
mixture; the dashed curve represents the metastable
states. We denote the ratio eT/eg by e*. Points 1-7
correspond to the values of er’f =0.35,71/3, 0.32, 0.30,
0.26, 0.20, and 0.

For p = pg and p = py the quantity e, is equal to
4Q/9. In other words, nearly one~half of the binding
energy is already expended on overcoming the cohesive
forces even before the isentrope enters the two-phase
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domain (the thermal energy at the critical point is still

high, er = 2Q/9). We note that the isentrope passing
through the critical point also passes threugh the point
p = po, ep =2Q, and p = pgcf. If the material is heated
and expands nonadiabatically, but rather by continuous
heating, then it is necessary to maintain e > 2Q/3, so
that the curve p(p) passes over pj outside the two-phase
domain during expansion,
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Hence, in order to ensure that the material is es-
sentially vaporized and rendered gaseous during ex-
pansion, it is necessary to provide an energy release
in it of between @ and 2Q.

Now let us compare instantaneous heating at con-
stant density with heating of a solid material in a shock
wave. The initial point of the relief adiabat which
passes through the critical point and lies on the Hugon-
iot adiabat (4.14) has the parameters pg = 10.7p0c§,
pg = 2.2pq, while that which passes through the point
p=0, p= PM has the parameters pg = 6poc§, Pg = 2py.
The above estimates and the estimates of [1] imply that
substantial evaporation requires that the amplitude of
the shock wave be quite large (e.g., for pycé = 3 x 10°
kg/cm2 it is necessary to have a pressure p = 2—-3 X 106
kg/cmz). Such pressures are attainable in the labora-
tory [1, 2], although with some difficulty, It is there-
fore possible in principle to compare data on the value
of v obtained for instantaneous heating with data ob-
tained for heating of the solid material in a shock wave
followed by relief,

86, Let us introduce the dimensionless momentum
by means of the relation

i=1)V2Em,. (6.1)

Figure 6 shows i as a function of the parameter fg =
= Qmy/E characterizing the degree of heating of the
material for the case of a uniformly heated layer of
mass m, = my, The momentum I was computed from
formula (2.1) for the gaseous layer ig and from formu-
la (3.3) (for variocus values of the parameters v and 7).
The coefficient x in formula (2.1) which corrects for
energy redistribution during dispersion was taken to be
0.8 (see §2). We also introduce the ratio of the momen-
tum to the energy and render it dimensionless by mul-
tiplying it by VQ.

E=IVOIE=iVF. (6.2)

The dependence of the "energy utilization" factor £
introduced this way is shown in Fig, 7 for the case of
a uniformly heated layer of thickness my = m,, The
factor £ obtained in computing I from formula (2.1) is
denoted by the subscript s; that determined from Eq.
(3.3) is denoted (in the text) by the subsecript 0. As we
see, the factor £g has a maximum, while the gquantity
&y is close to the maximum value of £g.

As we noted in §3, the interaction of acoustic rare-
faction waves in the center of a uniformly heated layer
produces a maximum negative stress equal to py/2 in
absolute value. Introducing the dimensionless criterion
w (the ratio of the internal energy ey,, heating to which
results in rupture of the material as a result of rare-
faction wave interaction in the heated layer, to Q), we
can write the following expression for the case of uni-
form heating:

u.)=e.w/Q=2(7(Y—1)/QPO'

If we assume that the strength ¢ of a material is
equal to its theoretical value g, then for n = 3 and
k = 2 we have 0,1, = pecd/7 = 200Q/7, and for y = 2 the
parameter wp = 0,56, In fact, the real strength of a
material is considerably smaller than its theoretical
strength (one must, of course, allow for increases in
real strength as a result of decreases in loading time
{8, 9]). Here we need only note that w < wp ® 0.5,
i.e., that w < 1, and that a mechanical momentum
arises as a result of rupture of the material even with
heating to energies ey, considerably smaller than Q.

The assumptions which lead to (2.1) and (3.3)
are not valid in the range e ~ Q (in the former
case the material cannot be considered gaseous; in the
latter case one cannot neglect the momentum arising
after encounter of the rarefaction waves and the possi-
bility of numerous split-offs and dispersion of the en-
tivre material), The function £ in this domain can be
obtained by means of the aforementioned numerical

6.3)

-2
i
-
i —

| o
!

2 0
Fig. 8

computations of the entire gasdynamic picture of mo-
tion. The possible divergence of the results of such
computations (for large heats) from the approximate
estimate (3.3) depends essentially not only on pa-
rameters such as y, A, W, but also on the equation of
state of the material in the domain p < pg (velief follows
encounter of the rarefaction waves). For an equation of
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state having the form assumed in $§4 and 5, the mo-
mentum (according to numerical computations of the
hydrodynamic motion) is fairly close to (3.3) (the
disparity for Jg € 1 is not larger than 20-30%, and
diminishes with decreasing heating), In our computa-
tions we assumed that stratification into two phases

did not occur, and that rupture of the material took
place with relief o p = 0, To determine ¢ and I more
precisely in the range f(m) = Q it is necessary to com-
pute the motion of the material using a more exact
equation of state and to allow for the possible formation
of two phases; in addition, the moving material can
take the form of a mixture of vapor and droplets (or
solid fragments) not in thermal equilibrium with each
other, i.e., having different velocities and tempera-
tures.

From now on we shall estimate the momentum from
(3.3) in the range fg > 1 and from (2.1) in the range
fs § 1.

From Figs. 6 and 7 we see that the value of the
tgplit-off" momentum I; is essentially determined by
the thermodynamic properties of the heated and cold
material, while the boundary where such a momentum
still exists depends on the strength of the material
relative to “"split-off."

§7. When laser radiation interacts with a sufficient-
ly thick layer of material, the radiation flux diminishes
with thickness as a result of absorption (see §2). This
makes it necessary to alter formulas (2.1) and (3.3) to
allow for nonuniform energy release with respect to
depth. Assuming that the final dispersion velocity of
each gas particle is independent of those of the other
particles, we can rewrite formula (2,1) as

1=\ V2Tm —0)dn.

0

(7.1)

Here I is the momentum of the gaseous layer; f(m)
is the energy released per unit mass of the gas (which
varies with depth); my is the mass of the layer of dis-
persed "gaseous" material, i.,e., the mass up to the
point at which we cease to employ formula (7.1) (as we
shall show below, my turns out to be close to the mass
mg of the layer in which the energy released exceeds
the binding energy Q). Formula (7.1} was proposed by
E. M. Rabinovich, who set my = mg and x = 0.8. The
coefficient x¥ in the case of nonuniform heating corrects
for energy redistribution not only during dispersion of
the material into the void, but also during propagation
of the compression and shock waves occasioned by the
reaction force exerted by the dispersed material and
propagating into the interior of the cold material. Re-
distribution by the shock wave can be important only in
the case of a strong wave (Ap > pecd) which travels far
and takes in a large mass (the "orief™ shock effect [1]).

From now on we shall assume a relatively low de-
gree of heating and shall neglect the redistribution of
energy by the shock wave, Redistribution of energy
during dispersion of the gas into the vacuum in the case
of nonuniform heating of the mass results in a value of
x different from 0.8. But this difference is small [4] in
the case of an exponential function, for example; thus,
in (1.2) for % = const = 1/m, in the case where

my > mg the coefficient x = 0.6 (with prolonged heat-
ing, when redistribution of energy by the shock wave is
slight [4], and when energy is redistributed only during
dispersion into the vacuum). Since we are interested
primarily in the case where my ® m; or my < my (and
finally, where my = 0), the gaseous layer is uniformly
heated, and X can be taken equal to 0.8 as before,

ia
A

td
T10g f;
Fig. 9

S
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We note that according to [4] the momentum arising
with dispersion of the gaseous layer varies little with
increasing ratio of the time 7 of energy application to
the characteristic layer dispersion time, i.e., our
estimate of the momentum is valid even for a very
thin layer of the above description.

We can transform formula (3.3) in similar fashion:

m,
w

_1=1 1 (m) d o
To= 2 S Vcoz—f-']’(’}’—i)/(m) e (7.H)

Here I; is the momentum of the "split-off" layer,
and my, is the mass of the layer to the point of "split-
off, " i. e., the point at which heating is insufficient for
rupture of the material to occur. We note that if we
neglect the variation of the speed of sound c relative to
Cy, we have

_ (r— ) (B — Ey)
- 2¢cq ’

I, (1.3)

where Ey and Ey; are the energies present in the entire
layer from m = 0 fo m = my and to m = my,, respec-
tively; E, is the energy of the layer from my to m,.
In computing the momentum I, in the case of nonuni-
form heating, we determined the parameter w and the
mass My, of the"split-off" layer from condition (6.3)
and the condition f(m,) = wQ, which we justified above
for the case of a uniformly heated layer. According to
the solution of the problem of thermoelastic deforma-
tions (in the hydrodynamic approximation), the pres-
sure distribution with exponential heating is

p=1ypy (e + e forp>0
p =1y po (e — e) forp <O
po= (m — pycot) / My, 1= (m + peeet) / me. (T.4)
There is an abrupt (stepwise) decrease in pressure
at the curve u = 0. The negative stress of maximum
absolute value occurs at this moving point and is givenby.

(7.5)

Py = — Moo (L —exp (—2m [mg)}.
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It diminishes with time from 0 to —p,/2. It is clear
that solution (7.4), (7.5) is valid until, according
to Ed. (7.5). Pmin > —0. For py ® 20 the occurrence or
nonoccurrence of split-off, the magnitude of the ex-
pelled mass m,,, and the value of the momentum I, de-
pend on random factors. On the other hand, if py > 20,

_ pay
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then not only single, but multiple split-off and frag-
mentation of the material will occur. With an exponen-
tial decrease of the degree of heating with depth, the
mass my Which is split-off is approximated by the re-
lation :

my = myIn (B JwmyQ) = myln (1 fw f). (7.6)

The exact value of the mass my, has little effect on
the value of the momentum, since according to form-
ula (7.3), the quantity which determines the momentum
is the energy absorbed between the "transition" point
my (close to the "sublimation" point mg) and the split-
off point my. In fact, o < p¢Q, so that f(my) < f(mg) =
= Q, so that the major portion of the energy beyond the
evaporation point lies between the points my and my,.
Because of the rapid decrease in f(m) with depth,
changes in the position of my, have little effect on the
magnitude of this energy, and therefore on the value of
the momentum, We determined the point of transition
from formula (7.1) to (7.2) on the basis of the assump-
tion of continuous momentum of an infinitely thin unit
layer, i.e., from the assumption that the integrands
of (7.1) and (7.2) are equal,

(y—1)f (my)
2Vl —y(r—97 (my)

%V 2(f (me) — Q) = (.7
Computations using Eq. (7.7) (see also Figs. 6 and
7) indicate that the energy per unit mass f(m,) at the
"transition" point my is close fo the binding energy Q.
The total momentum I can be determined by adding the
‘momentum Ig of the layer of material heated to the

"gaseous" state (given by Eq. (6.3)) to the momentum
1, of the layer of material partially vaporized or frag-
mented (given by Eq. (7.1)) under the assumption that
these quantities are independent (I = Ig + I¢). In reality,
however, the processes of dispersion of the two phases
can interact, For example, the presence of a positive
pressure at the boundary with the gaseous phase can
hinder the formation of negative stresses in the con-
densed medium (this fact was drawn to our attention by
G. F. Filippov). But if the speed of sound in the gas-
eous layer is markedly higher, and if its thickness is
markedly smaller than the speed of sound in, and the
thickness of, the "cold" layer, then the time of dis-
persion of the gaseous layer and the time required for
the pressure in it to drop to negligibly small values are
considerably smaller than the characteristic time of
gasdynamic processes and of "split-off® in the "cold"
layer, The momentum of the gaseous layer is simply
transmitted through the region where the material is
heated to energies smaller than Q.

Conversely, if the maximum amplitude of the waves
passing through the "cold" layer is sufficiently large
as compared with pge?, then the latter is "pumped"
with additional energy, which results in a further in-
crease in momentum. However, we are concerned with
relatively low degrees of heating where Ap § pyef, and
the "gaseous layer" affects the cold layer negligibly, if
at all.

The results of our computations of the momenta for the case of an
exponential function f(m) for constant values of the parameters charac-
terizing the equation of state of the material (y and X) and its strength
(w) appear in Figs. 8, 9, and 10 in the form of the "energy utilization”
factor with allowance for "split-off” (£ = £y + gs) and without allow-
ance for it (£5) as functions of the parameter fs characterizing the de-
gree of heating of the material. As we see from Fig. 8, the changes
in momentum with changes in y are quite marked, so that the momen-
tum of a nonuniformly heated layer can be used as a basis for drawing
conclusions about the thermodynamic properties of the material. From
Fig. 10 we see that with nonuniform heating the dynamic tensile
strength (the change in w) affects not only the boundary at which the
"split-off" momentum arises, but also the magnitude of this momen-
tum.

Curves 1, ..., 9inFig. 10 correspond to the following values of
the parameters (y, w): I(3,0.002), 2(3, 0.015), 3(2, 0.002), £ (2, 0.01),
5 (1.87, 0.002), 6 (1.67, 0.015), 7 (3, 0.1), 8 (2, 0.1), 9 (1.67, 0.1). If the
quantity y varies with heating (and therefore with depth), then in com-.
paring experimental and theoretical values we can determine only the
average value of y for the heated layer. It is therefore desirable to
conduct experiments under conditions of uniform heating.

§8. The above notions concerning the production of a mechanical
momentum at low specific energies and the relationship of its value to
the equation of state, the strength of the material, and the applied
energy required experimental verification, which was, in fact, ob-
tained for several materials. We investigated the mechanical momen-
tum, the dispersion pattern, the velocity of the split-off material, and
the pressure arising directly in the material under a laser beam, The
results of these experiments will be published later. We merely note
at this time that the production of a "split~off" momentum predicted
by one of the authors of the present paper and the quantitative estimate
of this momentum obtained above were confirmed.

It should be noted that the phenomenon under discussion is of in-
terest not only as a source of data on the thermodynamic properties of
a body. The effects of instantaneous heating by laser radiation and the
subsequent dispersion of the material are of independent interest. They
can be considered, for example, as a method of producing susface ex-
plosions in a whole range of materials for the purpose of generating



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 9

shock and compression waves of very small length—something which is
difficult to achieve by other methods.

The authors are grateful to I. L. Zel'manov, A. I. Petrukhin,
E. M. Rabinovich, and G. F. Filippov for their valuable comments.
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