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The dispersion of a material heated (for example, by laser radiation) 
"instantaneously, " i. e., in a time much smaller than ~he characteris- 
tic dispersion time, is considered. It is shown that heating of a layer of 
material even to internal energies much smaller than the heat of evap- 
oration can result in expulsion of part of the material due to the inter- 
action of the rarefaction waves and to the formation of negative stress- 
es. The dependence of the momentum on the applied energy and ther- 
modynamic properties in the event of this "split-off" effect is deter- 
mined for the cases of uniform and nonuniform heating. It is suggested 
that instantaneous heating of a material layer be used for determining 
its equation of state for densities close to the solid-state density. 

w S e v e r a l  pape r s  concern ing  the t h e r m o d y n a m i c  

p r o p e r t i e s  of so l ids  and l iquids  at high p r e s s u r e s  and 
t e m p e r a t u r e s  have appea red  r ecen t ly .  A high p r o p o r -  
t ion of s tudies  in th is  f ie ld  have  been conce rned  with 
the equat ion of s ta te  of a m a t e r i a l  under  c o m p r e s s i o n  
and heat ing in a powerfu l  shock wave;  the r e l a t i onsh ip  

among the p a r a m e t e r s  c h a r a c t e r i z i n g  the s ta te  (i: e . ,  
the p r e s s u r e  p, the e n e r g y  e,  and the spec i f i c  vo lume  
v) was es tab l i shed  in t he se  s tudies  f r o m  the shock 
adiabats  d e t e r m i n e d  by v a r i o u s  methods  [1, 2]. By the 
spec i f i c  na ture  of shock me thods ,  high p r e s s u r e s  and 

t e m p e r a t u r e s  enta i l  i n c r e a s e s  in the dens i ty  o f  the 

m a t e r i a l .  It is a l so  of i n t e r e s t ,  however ,  to i n v e s t i -  
gate the t h e r m o d y n a m i c  funct ions at high p r e s s u r e s  
and t e m p e r a t u r e s ,  but at n o r m a l  dens i ty  Pc (or at 
n e a r l y  n o r m a l  densi ty) .  Such s t a t e s  can be  ach ieved  

by " ins t an taneous"  heat ing of the m a t e r i a l  (p = Pc) and 
i ts  subsequent  d i s p e r s i o n  (p < P0). 

In fac t ,  if  the e n e r g y  r e l e a s e  t i m e  7 is s m a l l e r  than 
the c h a r a c t e r i s t i c  t i m e  of change of the t e m p e r a t u r e  
and densi ty  dur ing  hydrodynamic  mot ion  ( f rom now on 

we a s s u m e  that  heat  conduction is negl ig ib le) ,  then the 

dens i ty  P0 of the m a t e r i a l  r e m a i n s  constant  dur ing  
rap id  heat ing and even a f t e r  it. At th is  dens i ty  Pc (or 
at one c lose  to it) the e n e r g y  e x of "co ld"  c o m p r e s s i o n  

or  expansion and the c o r r e s p o n d i n g  p r e s s u r e  Px a r e  

sma l l  as compared  with the " t h e r m a l "  ene rgy  e T and 

the " t h e r m a l "  p r e s s u r e  PT. The p r e s s u r e  produced  by 
heat ing is  r e l a t ed  to the e n e r g y  r e l e a s e d  by the e x p r e s -  

sion 

P = PT = poet (7 --  i) -- po e (7 - -  t), (1.1) 

where  y is the e f fec t ive  ( " in t eg ra l " )  ad iaba t ic  exponent.  
If it is poss ib l e  to m e a s u r e  the p r e s s u r e  p, then 7 can 
be found f r o m  r e l a t i o n  (1.1) p rov ided  one knows the 

e n e r g y  concen t ra t ion  f (m)  in a unit m a s s  with the L a -  

g rang ian  coord ina te  m. 

" Ins tan taneous"  e n e r g y  r e l e a s e  in a m a t e r i a l  can be 

p roduced ,  fo r  example ,  by rad ia t ion  f r o m  a Q- sw i t ched  

pulse  l a s e r .  In th is  c a s e  the e n e r g y  concen t r a t ion  f (m)  

ean be found f r o m  the known absorp t ion  v~ of the m a -  

t e r i a l  (or f r o m  i ts  known absorp t ion  funct ion •  P0)) 
on the b a s i s  of the ene rgy  appl ied pe r  unit s u r f a c e ,  

m 

The ene rgy  f (m)  r e l e a s e d  p e r  unit m a s s  is  e a s i e s t  
to find when N = const  = N0, whe re  N 0 is  the a b s o r p -  
t ion of the m a t e r i a l  in the "co ld"  s ta te .  Let  us find the 

c h a r a c t e r i s t i c  m a s s  m0 = 1/~0 of the heated m a t e r i a l .  
F o r  suf f ic ien t ly  l a rge  va lues  of E/m0 the ene rgy  

concen t ra t ion  exceeds  the heat  of evapora t ion  Q of the 
m a t e r i a l  in the su r f ace  l a y e r ,  

m ~ m 0 ,  / ( m ) ~  f ( 0 ) = E / m 0 .  

F o r  l a r g e  va lues  of E / ~ 0  this  is a l so  t rue  fo r  the 
d e e p e r  l a y e r s ,  

m s , m 0 ,  Q : / ( m ~ ) ~ E / r n  0. 

By  va ry ing  the e n e r g y  E appl ied pe r  unit a r e a  (this 
can be r e a d i l y  a c c o m p l i s h e d ,  f o r  example ,  by sui tably  
adjus t ing  the l a s e r  b e a m  focus ing  at constant  ene rgy) ,  
one can inves t iga t e  a v e r y  i n t e r e s t i n g  range  of (e T, p) 

va lue s ,  i . e .  , e T ~ Q, p ~ P0, i . e . ,  the range  in which 
de t e rm ina t i on  of the equat ion of s ta te  by t h e o r e t i c a l  

methods  is  v e r y  diff icul t .  The quant i ty  ~ in th is  range  
r e m a i n s  cons tan t  if  abso rp t ion  o c c u r s  on the m o l e c u l a r  
o r  a tomic  l e v e l ,  and if c o n s i d e r a b l e  t h e r m a l  mot ions  

of the m o l e c u l e s  o r  a t o m s ,  o r  the exc i ta t ion  of t he i r  

internal,  d e g r e e s  of f r e e d o m ,  do not as  yet  a f fec t  4 .  
The s i m p l e s t  p i c tu re  of heat ing and subsequent  d i s -  

p e r s i o n  o c c u r s  i f  the r a d i a t i o n - h e a t e d  l aye r  is " t r a n s -  
pa ren t ,  " i . e . ,  if  i ts  t h i ckness  Xr << x0 = m0/P0 so that  
the l a y e r  is heated p r a c t i c a l l y  un i fo rmly .  The condi-  

t ion of " i n s t a n t a n e o u s n e s s "  is fu l f i l led  for  c h a r a c t e r i s -  

t i c  t h i c k n e s s e s  x r >> cT, whe re  c is the speed of sound, 

i. e . ,  if  the quant i ty  x r s a t i s f i e s  the l a t t e r  r e s t r i c t i o n  
f o r  the g iven va lue  Of r .  F o r  va lues  of c c lose  to the 
speed of sound co in the "co ld"  s t a t e ,  i . e . ,  fo r  c on the 
o r d e r  of 3 x 105 c m / s e c  and z ~ 2 x 10 -8 sec  (a typical  

r ad ia t ion  t i m e  fo r  a Q - sw i t ched  pulse  l a se r )  th is  condi-  
t ion is Xr > 6 • 10 -3 cm. Thus,  the r ad ia t ion  path x0 >~ 
>~ x r m u s t  not be too smal l .  This  condit ion is not ful -  
f i l l ed ,  fo r  example ,  fo r  m e t a l s  ac ted  on by rad ia t ion  

in the opt ica l  r ange  (x0 ~ 10 -5 cm).  Howeve r ,  t h e r e  is 
a suf f ic ien t ly  b road  range  of m a t e r i a l s  which do sa t i s fy  
th is  condit ion.  F u r t h e r m o r e ,  the depth to which the r a -  
d ia t ion p e n e t r a t e s  can often be * a r i e d  by a l t e r i ng  the 

co lo r  of the m a t e r i a l .  
w It is sometimes more feasible to determine the total reactive 

momentum I instead of measuring p directly, Analysis of the depen- 
dence of the momentum I on the incident energy E and study of the 
dispersion pattern of the material can provide certain information about 
the state of the latter. 

Let us consider a straightforward evaluation of the momentum for 
the case where the specific energy (i. e., the energy per unit mass) is 
much larger than the heat of evaporation Q, and where the heated ma- 
terial can be considered as a gas. If we disregard energy redistribution 
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among the particles, we can say that all of the energy E/m0 applied to 
a unit mass, with the exception of the heat Q expended on the disrup- 
tion of molecular bonds, is converted into the kinetic energy of disper- 
sion uZ/2, where u is the velocity of the material (equal for all the par- 
tides), and that the mechanical recoil momentum during dispersion of 
the uniformly heated material of mass m r is given by the relation 

I = " '"r  = m ~  Y g ( ( E  / too) - -  Q )  = 

= (,,~,/,,~0) V- 2E,~o (,t --  f,j. (2 . l )  

Here and below the dimensionless parameter fs = Qm0/E. Consider- 
ation of energy redistribution over the particles during dispersion due to 
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Fig. I 

the work performed by some of the particles on others and allowance 
for the consequent change in the momentum I gives rise to a coefficient 
X in front of the right side of formula (2.1), In the case of adiabatic 
dispersion of a layer uniformly heated over its mass [3] this coefficient 
depends on the adiabatic exponent 7, but this dependence is a relatively 
weak one; thus, as the exponent y changes from 1 to 3, the coefficient 
• changes from 0,798 to 0,865. As we infer from the solution of the 
problem of dispersion of a gradually Cslowly") heated material [4], the 
momentum can also be estimated from formula (2.1), but the coeffi- 
cient • turns out to be completely independent of the adiabatic expo- 
nent 7 and is equal to  (2/*r) t/~ ~ 0.798 in the case of uniform heating. 

From this it follows that in investigating the magnitude of the mo- 
mentum arising with concentrations of released energy which ate higher 
than the heat of evaporation of an instantaneously or gradually heated 
layer it is diffieuk to obtain information about the thermodynamic state 
of the material. As will be shown below, the momentum can arise for 
energy densities comparable with, and even much smaller than, the 
heat of evaporation Q. If ](m) -~ Q or ](m) < Q, the material cannot 
be regarded as an ideal gas, and the estimate of the mechanical mo- 
mentum given below implies that its value is highly sensitive to the 
adiabatic exponent T, the speed of sound c, and their dependences on 
the thermal energy eT, and that the role of T is more significant than 
in the case f(m) >> Q. 

We note that for E = m0Q formula (2.1) yields a momentum of zero. 
This is because in deriving (2.1) we assumed that expansion of the ma- 
terial following heating presupposed expenditure of energy sufficient to 
break all the intermoleeular bonds determining the structure of the 
solid. However, the condition f(m) -< Q does not mean that the mate- 
rial has not evaporated. It simply means that it cannot evaporate com- 
pletely. Conversely, the inequality f(m) > Q does not mean that the 
material has evaporated completely, since relief can involve partial 
condensation, and the heat expended can be smaller than Q. 

w L e t  u s  c o n s i d e r  t h e  f o l l o w i n g  g a s d y n a m i c  p i c -  

t u r e  w h i c h  c a n  l ead  to d i s p e r s i o n  of t h e  m a t e r i a l  and 

to  t h e  f o r m a t i o n  of  a m e c h a n i c a l  m o m e n t u m  e v e n  in 

t o t a l  a b s e n c e  of  e v a p o r a t i o n ,  i . e . ,  f o r  f ( m )  << Q. 

" I n s t a n t a n e o u s "  h e a t i n g  u n i f o r m  o v e r  the  m a s s  m r 
p r o d u c e s  t he  p r e s s u r e  p d e f i n e d  by  r e l a t i o n  (1.1). If 

t he  s u r f a c e - h e a t e d  m a t e r i a l  i s  b o u n d e d  by a v a c u u m  on 

one  s i d e  (m = 0) and b y  co ld  m a t e r i a l  on  t h e  o t h e r  (m = 

= m r ) ,  t h e n  r a r e f a c t i o n  w a v e s  b e g i n  to  m o v e  (at the  
i n i t i a l  i n s t a n t )  f r o m  the  above  b o u n d a r i e s  in to  t he  m a -  
t e r i a l .  T h e s e  w a v e s  m e e t  i n s i d e  the  h e a t e d  l a y e r  (if 

t h e  co ld  and ho t  l a y e r s  a r e  of t he  s a m e  m a t e r i a l ,  t hey  

m e e t  a t  t he  c e n t e r ) ;  m o r e o v e r ,  a c o m p r e s s i o n  wave  

b e g i n s  to  m o v e  in to  t h e  i n t e r i o r  of t he  m a t e r i a l .  

L e t  u s  c o n s i d e r  t h e  p i c t u r e  of  t h i s  p r o c e s s .  F i g u r e  

l a  s h o w s  the  p r e s s u r e  d i s t r i b u t i o n  at  t he  i n i t i a l  i n s t a n t  

(P = P0 in  t h e  0 -< m - m r r a n g e ) .  F i g u r e  l b  s h o w s  tha t  

t h e  h e a t e d  m a t e r i a l  h a s  b e g u n  to  b e  r e l i e v e d  b y  the  

rarefaction waves ~oi and ~2, and that the shock wave 
qoa is propagating in the cold material. If E << m0Q, 
then the amplitude Ap of the resulting waves is smaller 
than P0e}, since the ratio Q/c0 z is on the order of unity. 

This allows us to use the acoustic approximation. 

Then, if we assume that the speed of sound remains 

constant throughout the heating process, we can write 

hp = 9ocohu. (3.1) 

L e t  u s  i n t r o d u c e  the  c h a r a c t e r i s t i c  v e l o c i t y  u 0 = 

= P0/P0c0. A p p l y i n g  f o r m u l a  (3.1) to  t he  w a v e s  r ~2, 
and q)3, we  f ind t h a t  in  d o m a i n  1 the  m a t e r i a l  i s  r e -  

l i e v e d  (p = 0) and m o v e s  l e f t w a r d  wi th  the  v e l o c i t y  u = 

= - u  0. In d o m a i n s  2 and 4 i t  i s  s t a t i o n a r y ,  w h i l e  in  d o -  

m a i n  3, w h e r e  p = p0 /2 ,  i t s  v e l o c i t y  i s  u = % / 2 .  The 

w a v e s  <ol and ~2 m o v e  t o w a r d s  e a c h  o t h e r  w i t h  the  v e -  

l o c i t y  c o . T h e y  m e e t  a t  t h e  c e n t e r  of the  ho t  l a y e r  at  
t he  i n s t a n t  to = x0/2c0. The  m a t e r i a l  in d o m a i n  2 (Fig.  

l c )  now m o v e s  w i t h  the  v e l o c i t y  u = - u 0 / 2 ,  and i s  a t  

t he  p r e s s u r e  p = - p 0 / 2 .  If t he  r e s u l t i n g  s t r e s s  e x c e e d s  

the  d y n a m i c  t e n s i l e  s t r e n g t h  cr of the  m a t e r i a l ,  t hen  

r u p t u r e  o c c u r s ,  and  the  e n t i r e  d o m a i n  1, i . e . ,  the  

l a y e r  of m a s s  m r / 2 ,  s p l i t s  off  wi th  the  v e l o c i t y  u = 

= - u 0 ,  p r o d u c i n g  the  m o m e n t u m  

1,~.n m r FtZ:,'P 0 ] 9 0 ~  r 

I = ~ = 2poc--~ = 2co (3.2) 

Taking a different approach (i. e., assuming that 

the two halves of the layer are acted on by the pressure 

P0 throughout the time to), we obtain the same expres- 

sion for I. Making use of the relationship between the 

initial pressure P0 and the initial volume energy con- 

centration E0/x0 defined by Eq. (I.i), we find that the 

momentum I depends on the energy E r released in the 

layer x r by the expression 

I E (T-- I) z~ Er(T-- 1 ) (3.3) 
2co zo 2co 

If the  m a t e r i a l  i s  no t  u n i f o r m l y  h e a t e d ,  i . e . ,  i f  t he  

t o t a l  m a s s  of  t he  l a y e r  i s  M ~ m0 o r  M >> m 0, then ,  by 

v i r t u e  of the  r a p i d  ( e x p o n e n t i a l  f o r  ~ = cons t )  d e c r e a s e  

of  e n e r g y  wi th  d e p t h ,  we  can  s c h e m a t i z e  t he  p h e n o m e -  

non  and  a s s u m e  t h a t  in  t h e  m a t e r i a l  in  t h e  l a y e r  m r  = 

= m0 i s  h e a t e d ,  and t h a t  t h i s  l a y e r  c o n t a i n s  a l l  of the  

e n e r g y  E ,  w h i l e  t he  l a y e r  m > m0 i s  a b s o l u t e l y  co ld .  
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Then E r = E, and Eq. (3.3) implies that the momentum 
does not depend on the depth of penetration x~ of the 

radiation. 

If there is no split-off, the picture becomes that 

shown in Fig. id. Here the shock wave (p = p0/2, u = 
= u0/2 ) is followed by the rarefaction wave (p = -P0/2, 
u =-u0/2 ) which ends in a jump after which p =0, u = 
= 0. Since the width of the "positive" phase domain 

(u > 0) and the width of the "negative ~ phase are equal 

to each other and to the initial thickness x r of the 

heated layer, it follows that the total momentum of the 

system is zero. 

Recalling that Q is of the same order of magnitude 

as c~ and introducing k according to the relation c0 2 = 

= XQ, we can rewrite Eq. (3.2) in a form which differs 

from Eq. (2.1) only by a coefficient dependent on is, 

,,~o 2 )/Yk!~ 

F r o m  Eq.  (3.4) we i n f e r  t h a t  f o r  f s  >- 1 t h e  m o m e n -  
t u m  i s  no t  e q u a l  to  z e r o  a s  E q .  (2.1) wou ld  i n d i c a t e .  

T h e  m o m e n t u m  d e c r e a s e s  s l o w l y  w i t h  i n c r e a s i n g  i s .  

A s  we s e e  f r o m  Eq .  (3.3) a n d  Eq.  (3 .4) ,  t he  m o m e n -  

t u m  d e p e n d s  r a t h e r  s t r o n g l y  on % 

~4. F o r m u l a s  (3.2) a n d  (3.3) c a n  b e  r e f i n e d  b y  t a k -  
i ng  a c c o u n t  of  t h e  c h a n g e s  in  t h e  s p e e d  of  s o u n d  in  t h e  

m a t e r i a l  a s  i t  i s  h e a t e d .  T h e  s p e e d  of s o u n d  in s o m e  

m a t e r i a l s  f o r  p = P0 and  f o r  h e a t s  on t h e  o r d e r  of Q h a s  
b e e n  m e a s u r e d  d i r e c t l y  [1,  2 ,  5, 6]. T h e s e  d a t a  w e r e  

o b t a i n e d  b y  s h o c k  w a v e  c o m p r e s s i o n  of a m a t e r i a l  
w h o s e  d e n s i t y  h a s  b e e n  r e d u c e d  in  a d v a n c e  (i. e.  , a 

m a t e r i a l  in  p o r o u s  o r  p o w d e r  f o r m ) .  T h e  q u a n t i t y  T 

w a s  a l s o  d e t e r m i n e d  i n  t h e s e  e x p e r i m e n t s .  S i n c e  i t  i s  
d i f f i c u l t  to  p r o d u c e  h i g h - v e l o c i t y  s h o c k  w a v e s  in  s u c h  
e x p e r i m e n t s ,  t he  l a t t e r  a r e  f ew  in  n u m b e r  and  h a v e  
b e e n  p e r f o r m e d  f o r  a s m a l l  r a n g e  of  m a t e r i a l s  on ly .  

L e t  us  t h e r e f o r e  e s t i m a t e  t h e  c h a n g e s  in t h e  v a l u e  of  

c w i t h  h e a t i n g .  

In g e n e r a l  f o r m ,  t h e  e q u a t i o n  d e s c r i b i n g  b o t h  t h e  
c o n d e n s e d  a n d  t he  g a s e o u s  s t a t e s  of  a m a t e r i a l ,  a s  
w e l l  a s  i t s  " i n t e r m e d i a t e "  s t a t e s ,  c a n  b e  w r i t t e n  a s  

p = p ~ + p ~ ,  e = e ~ @ e r ,  P ~ = ( T - - l ) P e r  

'-(p) = - ' i  p d. = (4.1) 

H e r e  y (e  T ,  p) i s  t h e  e f f e c t i v e  a d i a b a t i c  e x p o n e n t ;  

Px,  PT a n d  ex ,  e T a r e  t h e  " e l a s t i c  ~ and  " t h e r m a l "  
c o m p o n e n t s  of  t h e  p r e s s u r e  and  e n e r g y .  

L e t  u s  m a k e  t h e  s i m p l i f y i n g  a s s u m p t i o n  t h a t  y = 

= y ( s ) ,  i . e .  , t h a t  y d o e s  no t  v a r y  o r  v a r i e s  l i t t l e  a l o n g  

t h e  i s e n t r o p e .  A s  we s e e  f r o m  [5, 6] ,  t h e  e x i s t i n g  e x -  

p e r i m e n t a l  f i n d i n g s  do no t  c o n t r a d i c t  t h i s  a s s u m p t i o n .  
T h e  e q u a t i o n  of s t a t e  of  t he  m a t e r i a l  c a n  t h e n  b e  w r i t -  

t e n  a s  

P = P ~ 0 - -  ( P / p o )  xF(s)  = p ~ @  ( p / p o ) ~ p .  ~ (4.2) 

H e r e  F and  p~? ( the  t h e r m a l  p r e s s u r e  f o r  p = Po) a r e  

f u n c t i o n s  of t h e  e n t r o p y  s .  

D i f f e r e n t i a t i n g  Eq.  (4.2) and  m a k i n g  u s e  of r e l a t i o n  

(1 .1) ,  we o b t a i n  t h e  f o l l o w i n g  e x p r e s s i o n  f o r  t he  s p e e d  

of s o u n d :  

s s tO 

(4.3t 

A c c o r d i n g  to  t h i s  e x p r e s s i o n  t h e  s p e e d  of  s o u n d  i n -  

c r e a s e s  w i t h  h e a t i n g .  F o r  e T = Q ,  i f  y = 2  a n d X =  1, 

t h e  s p e e d  of  s o u n d  i n c r e a s e s  b y  a b o u t  ~ t i m e s .  T a k i n g  

/..25 
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account of relation (4.3), we can rewrite formula (3.2) 

for the momentum as 

l - -  - r - - I  E x. ( 7 - - 1 ) E  r (4.4) 
2 c x0 2c0 ] / l  + T ( 7 - - 1 ) / ~ ] ~  

F o r  l a r g e  h e a t s ,  w h e n  E >> m0Q, i . e .  , w h e n  f s  << 1, 
t h i s  f o r m u l a  c a n  b e  w r i t t e n  a s  

i -  ~" ) : ~ - - ~  ) / 2 ~ 0 =  ~" ) / 2 ~ 0  (4.5) 
- 2too y ~  ~ Xo �9 

Expression (4.4) differs from Eq, (2.1) (for fs << 1) only by a numeri- 
cal coefficient • of order 1/2. The difference can be explained as 
follows:, in deriving formuIa (4.4) we did not allow for the fact that 
upon encountering the rarefaction waves the pressure drops to zero or to 
negative values which do not result in immediate rapture of the layer, 
i. e.,  the rarefaction waves (which are not acoustic) are of finite width, 
and that the layer heated to the "gaseous" state is dispersed completely, 
instead of one-half of it splitting off as in the case of low heats. We 
note that if the heated materiaI is bounded by cold, but more rigid, 
material, i .e . ,  if the displacement of the boundary is negligible, then 
the entire heated layer 'splits off, " and the coefficient in Eq. (4.4) and 
Eq. (4.5) must be doubled. Numerical computations carried out by the 
method of characteristics for the problem of dispersion of a uniformly 
heated layer bounded by a vacuum on one side and by cold material of 
the same density on the other showed that with heating to f(m) ~ Q 
the additional momentum following encounter of the rarefaction waves 
at the center is negligible prior to the instant, while the point at which 
the pressure is p = 0 or p = - o  is close to mr/2, Figure 2 is a general 
diagram showing interaction of the centered rarefaction waves, forma- 
tion of the shock wave, and "split-off' in the specific case e T = Q, 
k = 2, T = 2. Here A is the point where the pressure p = 0 is first 
achieved; R is the boundary of the rarefaction wave; S is the shock 
wave; 0 < m/m r< l is the hot layerl m/m r > l i s t h e c o l d  layer; 
m = 0 is the vacuum; L is the layer boundary. In carrying out such 
computations one must, of course, choose a specific form of the equa- 
tion of state. 

W e  a s s u m e d  t h a t  px(p)  i s  g i v e n  b y  t h e  e x p r e s s i o n  

p~ (,o) ~ - Y  (4.6) =P0% n ~  g ~ po )" 

W e  t h e r e f o r e  a s s u m e d  t h a t  t h e  r e p u l s i v e  and  a t t r a c -  

t i v e  f o r c e s  a r e  d e s c r i b e d  b y  p o w e r  f u n c t i o n s .  T h e  

e l a s t i c  e n e r g y  c a n  t h e n  b e  w r i t t e n  a s  
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~(Y~-- I --Y~-- I~ (4.7) 

F r o m  Eq. (4.7) we see that  the binding energy  Q of 
the solid (e x for  y ~ 0) is re la ted  to c 2 by the e x p r e s -  
s ion 

c0 ~ n - -  k 
L = - ~ -  (,, -- i ) (k -- i) " (4.8) 

Using the Eq. (4.8), we can d e t e r m i n e  the r e l a t i o n -  
ship be tween n and k f rom the known value of k. The 
va lues  of n and k can also be de t e rmined  sepa ra te ly ,  

5 

Co 

3 / 
t 

i 

! co 
o t 2 

Fig. 3 

for  example ,  f rom the known shock adiabat  PN(P), by 
v i r tue  of the condit ion of i ts  tangency to the cold com-  
p r e s s i o n  curve  Px(P) and the coincidence  of t he i r  s ec -  
ond de r iva t ives  (for p = P0). We note that it is not a l -  
ways poss ib le  to sa t i s fy  this  condit ion and condit ion 
(4.8). 

Expe r imen ta l  data can usua l ly  be r e p r e s e n t e d  as 
the l i nea r  dependence of the ve loc i ty  D of the shock 
wave f ront  on the veloci ty  u of the m a t e r i a l  beh ind  the 
shock wave [1, 2], 

D = c o + ~u. (4.9) 

If we a s s u m e  that  r e l a t ion  (4.9) is val id  for any u/c0, 
we can express  the adiabat  in the fo rm 

P0& (y -- 1) y (4.10) PN-- [~--(~-- 1)y] ~' 

F r o m  Eq. (4.6) and Eq. (4.10) we infer  that  for  y = 
= 1  

dPx - -  dPN poCo 2, d2PN 2 ( 2 ~ - -  l )  poeo 2 
dy dy - -  ' dy - - y  

d 'p  . . . .  (n  + t: - -  l) 9oCo ~" (4.11) 
dy-' 

Thus,  n + k = 4 f l  - 1. S e t t i n g n = 3 a n d k = 2 ,  we 
find that X = 2 and fi = 3 /2 ,  which a re  typical  average  
va lues  for  a b road  range  of m a t e r i a l s .  F o r  n = 3 and 
k = 2 we have 

p ~  = 9o% 2 ( f  - -  f ) ,  ex = :LI~ co2 (y  _ 1)~> (4.12) 

We note that n e a r  y = 1 the e las t i c  energy  e x can a l -  
ways be wr i t t en  in the f o r m  (4.12), s ince  it  has a m a x -  
imurn at the equ i l i b r ium point.  In [7] it is  shown that 
the coeff icients  of the subsequent  t e r m s  of t h e e x p a n -  
s ien  in (y - 1) a re  smal l .  Equat ion (4.12) is suf f ic ien t -  
ly typical ,  and the qual i ta t ive  conc lus ions  which can be 
drawn f rom it a re  val id for  other  funct ions  Px(P) as 
well.  

F r o m  Eq. (4.12) and Eq. (4.10) fo r 'p  = Ps, i . e . ,  for  
Y = Ys, we obtain 

2 4 - -Ys  f(p~) = ~-~ t. (4.13) 

Here Ps is the density of the material at the shock 
wave front (at the in~Stant when it passes through the 

given particle) which is related single-valuedly to the 
entropy s. 

This expression was already used by Koryavov [7], 
who assumed, however, that T = 7(P), i.e., that the 

funct ion Y(P) is of the sarape f o r m  as the funct ion 7(Ps). 
If this  w e r e  t rue ,  then for  p = P0 we would have the con-  
s tant  value 7 = T0 r e g a r d l e s s  of the amount  of heating 
(according to Eq. (4.13) we have Y0 = 2.5). 

It is c l ea r ,  however ,  that  y d e c r e a s e s  both with 
heat ing of a m a t e r i a l  at constant  densi ty  and with heat -  
ing along the shock adiabat .  Both T = y(s) and 7 = 7(Ps) 
do, in f a c t ,  conform to this  condit ion.  It is  c l ea r  that 
s t rong heat ing (when Ps ~ P*) co r re sponds  to the l i m i t -  
ing value of T, on the shock adiabat .  According  to 
Eq. (4.10), for  fi = 3/2 the l imi t ing  c ompr e s s ion  is 
p .  = 3p0, while according  to Eq. (4.13) we have 7* = 2. 
We note that for  u -> Co the l i nea r i ty  of D(u), i . e . ,  the 
l i nea r i ty  of Eq. (4.9), can,  in fact ,  be violated,  and 
the l imi t ing  value of y .  can differ  f rom the value of 7 
de t e rmined  on the bas i s  of ft. There  is not enough in-  
fo rma t ion  ava i lab le  on the t he rmodynamic  s ta tes  of 
va r ious  m a t e r i a l s  at p = P0 to enable  us to de te rmine  
the t rue  funct ion 7(P0, s) and to e s t ab l i sh  to what ex-  
tent  this  funct ion di f fers  f r o m  (4.13). In analyzing the 
equation of s ta te  we shal l  make one f u r t he r  s impl i fy ing 
a s sumpt ion ,  i . e . ,  that  y = const .  F o r  7 = 2 and Px(P) 
as given by Eq. (4.12), the shock adiabat  a s s u m e s  a 
fo rm which di f fers  s l ight ly f r o m  Eq. (4.10) for  fl = 3/2,  

(y2_ I) ~j (4.14) pN(p) = P0c0 ~ ~ - ~ "  

The funct ion D(u) co r r e spond ing  to Eq. (4.14) (the 
solid curve  in Fig.  3) i s ,  as be fore ,  c lose  to s t ra igh t  
l ine (4.9) with p = 3/2 (the dashed curve  in Fig. 3). 

p I~ ~/q q 

I \ 

Fig. 4 

Thus ,  the equat ion of s ta te  (Px(P)) as defined by (4.12) 
used in actual  n u m e r i c a l  computat ions  of hydrodynamic  
mot ion ,  and the value of 7 given by Eq. (4.13), or  7 = 
= const  = 2, yield shock adiabats  of f a i r ly  typical  shape,  
so that  the conc lus ions  drawn f rom these  computat ions  
m u s t  be suff ic ient ly  genera l .  

w The solid cu rves  in Fig.  4 r e p r e s e n t  the 
shock adiabat  S (4.14) and the i s en t ropes  I (4.2) for 
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T = 2; the dot -dash  cu rves  r e p r e s e n t  the cons tan t  
t h e r m a l  energy  e T. Extens ion of the i s en t ropes  
below the boundary  of the two-phase  domain  F a re  in -  
dicated by the b roken  cu rves  (A is the c r i t i ca l  point).  
The "cold" curve  Px(P) has a m i n i m u m  point.  The c o r -  
r e spond ing  va lues  of Px min  and Pmin can  be found (with 
px(p) defined by  Eq. (4.6)) f r o m  the condit ion 

~)mtn = Po \ a / , .Pxmin n 

which for  n = 3 and k = 2 yie lds  the exp re s s ion s  

Pmin  = 2/3Po, P m i n  ~-  - -  ~/27 PoCo 2 - ( 5 . 2 )  

The above value of Pmin yie lds  the theore t i ca l  t e n -  
s i l e  s t r eng th  a T of the m a t e r i a l .  As we see ,  a T is  ap-  
p rox ima te ly  one o r d e r  s m a l l e r  than p0c02. The r ea l  
s t r eng th  a of the m a t e r i a l  i s ,  oi cou r se ,  cons ide rab ly  

smaller than a T . 
The above equation of s tate  has a curve of m e t a s t a -  

ble  s t a tes  (dp/dp = 0 for  e T = const  is  r e p r e s e n t e d  by 
a broken  curve  in  Fig.  4). This  curve  i n t e r s e c t s  the 
s t ra igh t  l ine p = 0 for  the f i r s t  t ime  at p = PM (for p > 
> PM the curve  of me ta s t ab l e  s ta tes  l ies  in the domain  
p < 0 ) ,  

"k-- t  ,n-~ 

Fo r  n = 3 and k = 2 the quant i ty  PM = Po/2" As we 
see f r o m  f o r m u l a  (4.2) and Fig.  4, the i sen t rope  which 
pas se s  through this  point  e m e r g e s  f rom the point p = P0 
a n d e  T = Q  =c~ /2  ( f o r n = 3  a n d k = 2 w e h a v e  X = 2 ) .  

For  p = 0 and p = PM the "cold" ene rgy  e x = Q/4 ,  and 
the t h e r m a l  energy  e T = Q/2 ,  while,  as noted above,  
the in i t ia l  t h e r m a l  ene rgy  (for p = P0 on the s ame  i s e n -  
t rope) is e~ = Q. 

Thus,  if the m a t e r i a l  cannot  withstand negat ive  
s t r e s s e s ,  then the ene rgy  expended on adiabat ic  r e l i e f  
of a given pa r t i c l e  p r i o r  to rup tu re  of the m a t e r i a l  (p = 
= 0) is  much s m a l l e r  than Q (for p > PM or e~  ~< Q). 

0.0500 
P 

Fig.  5 

F igu re  4 shows the boundary  of the two-phase  do- 
main .  In the above d e t e r m i n a t i o n  of the point  of i n t e r -  
sec t ion  of the i s en t rope  with the s t ra igh t  l ine  p = 0 and 
in our  n u m e r i c a l  computa t ions  of the hydrodynamic  m o -  
t ion we a s s u m e d  that the i s en t rope  can be extended a l l  

the way to the curve  of me ta s t ab l e  s ta tes  or  p = 0 with-  
out tak ing  cognizance  of the fact  that the end point  l ies  
in the domain  of a poss ib le  two-phase  s tate  in which 
the m a t e r i a l  can exper ience  s t r a t i f i ca t ion  into two 
phases  (in equ i l ib r ium) ,  i . e . ,  that  the l iquid is s u p e r -  
heated in some domain.  However ,  this  is  un impor t an t  
f r o m  the s tandpoint  of ene rgy  expendi tures  (this is  
c l e a r  f rom Fig.  4), so that  the m a j o r  por t ion  of the 
work of expansion and ove rcoming  the cohes ive  fo rces  
is  expended below the l ine de l imi t ing  the two-phase  
domain.  This  is val id only for i s en t ropes  which en t e r  
the two-phase  domain  f a r  f r o m  the c r i t i c a l  point  on the 
bo i l ing  curve .  This  is because  fu l f i l lment  of the condi-  
t ions  of t h e r m o d y n a m i c  e qu i l i b r i um of the vapor  and 
l iquid me a ns  that  the slope of the i sen t rope  changes in 
this  domain.  

i 
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The boundary p = pg(v) of the two-phase domain can 
be found from the ordinary condition. It is the line 
connecting the points which satisfy the condition 

f p(v, er = const)d~: = pg (v.~ - -  vO. (5.4) 

Here p_ is  s o m e  p r e s s u r e ,  and v 1 and v 2 a r e  points  g 
on the boundary  of the two-phase  domain.  The c r i t i ca l  
point  is given by the o r d i n a r y  re l a t ion  

d p _  O, d-'p dp -- ~ = 0 for e T = const~ 

This  impl i e s  that 

1 k 

/ k (k - - l ) \  n-~ [ k ( k - - t )  n - ~ ' / k _ _ l , , ~  
P ~ = P o ~ )  'P~=P~176  i -~ - ,  / (5.5) 

for  T = const .  
L e t n = 3  a n d k = 2 .  T h e n P k  =po/3 a n d P k  = P0c~/27. 
The domain  of va lues  p, p c lose  to the c r i t i ca l  point 

is shown in g r e a t e r  detai l  in Fig.  5. Here I is the i s en -  
t rope  and F is  the boundary  of the two-phase  s tate  do- 
ma i n ;  the do t -dash  curves  r e p r e s e n t  s ta tes  with an 
equal liquid content in the equilibrium vapor-liquid 
mixture; the dashed curve represents the metastable 
states. We denote the ratio eT/c 2by e~. Points 1-7 
correspond to the values of e~ = 0.35, 1/3, 0.32, 0.30, 
0.26, 0.20, and 0. 

For p = Pk and p = Pk the quantity e x is equal to 
4Q/9. In other words, nearly one-half of the binding 
energy is already expended on overcoming the cohesive 
forces even before the isentrope enters the two-phase 
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domain  (the t h e r m a l  energy  at the c r i t i ca l  point  is  s t i l l  
high, e T = 2Q/9). We note that  the i sen t rope  pass ing  
through the c r i t i c a l  point a lso passes  through the point 
P = P0, e T = 2Q, and p = P0c0 z. If the m a t e r i a l  is heated 
and expands nonadiaba t ica l ly ,  but  r a t h e r  by cont inuous 
heat ing,  then i t  is n e c e s s a r y  to ma in ta in  e T > 2Q/3,  so 
that the curve  p(p) pa s se s  over  Pk outside the two-phase  
domain during expansion. 
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Fig. 7 

Hence,  in o rde r  to ensu re  that the m a t e r i a l  is  e s -  
sen t ia l ly  vapor ized  and r e n d e r e d  gaseous dur ing  ex-  
pans ion ,  it i s  n e c e s s a r y  to provide an ene rgy  r e l e a s e  
in  it of between Q and 2Q. 

Now let  us compare  ins tan taneous  heat ing at con-  
s tant  densi ty  with heat ing of a solid m a t e r i a l  in a shock 
wave. The in i t ia l  point  of the r e l i e f  adiabat  which 
pas se s  through the c r i t i ca l  point  and l ies  on the Hugon- 
lot  adiabat (4.14) has the p a r a m e t e r s  Ps = 10-7p0c~, 
Ps = 2.2P0, while that  which passes  through the point 

p = 0, p = PM has the p a r a m e t e r s  Ps = 6p0c0 2, Ps = 2P0. 
The above e s t ima te s  and the e s t ima te s  of [1] imply  that  
subs tan t ia l  evapora t ion  r e q u i r e s  that  the ampl i tude  of 
the shock wave be quite la rge  (e. g . ,  for  P0C~ = 3 x 10 5 
kg/cm ~ it is necessary to have a pressure p = 2-3 • l0 p 

kg/cm2). Such pressures are attainable in the labora- 

tory [i, 2], although with some difficulty. It is there- 

fore possible in principle to compare data on the value 
of 7 obtained for instantaneous heating with data ob- 

tained for heating of the solid material in a shock wave 
followed by relief. 

w Let us introduce the dimensionless momentum 

by means of the relation 

i = z / F 2 ~ . ~ o .  (6.1) 

Figure 6 shows i as a function of the parameter fs = 

= Qm0/E characterizing the degree of heating of the 
material for the case of a uniformly heated layer of 

mass m r = m0. The momentum I was computed from 

formula (2.1) for the gaseous layer i s and from formu- 

la (3.3) (for various values of the parameters 7 and k). 

The coefficient X in formula (2.1) which corrects for 

energy redistribution during dispersion was taken to be 
0.8 (see w We also introduce the ratio of the momen- 

tum to the energy and render it dimensionless by mul- 
tiplying it by 

~-- r F~/F-- iV~. (6.2) 

The dependence of the ~energy u t i l iza t ion  ~ factor  
in t roduced this  way is shown in Fig.  7 for the case  of 
a un i fo rmly  heated l ayer  of th ickness  m r = m0. The 
fac tor  ~ obtained in computing I f rom fo rmula  (2.1) is  
denoted by the subsc r ip t  s;  that  de t e rmined  f rom Eq. 
(3.3) is denoted (in the text) by the subsc r i p t  0. AS we 
see ,  the fac tor  ~s has a m a x i m u m ,  while the quanti ty 
~0 is  c lose  to the m a x i m u m  value of ~s. 

As we noted in w the in te rac t ion  of acoust ic  r a r e -  
fact ion waves in the cen te r  of a un i fo rmly  heated layer  
produces  a m a x i m u m  negat ive s t r e s s  equal to p0/2 in 
absolute  value.  In t roducing the d imens ion l e s s  c r i t e r i o n  
w (the ra t io  of the in te rna l  energy  ew, heating to which 
r e s u l t s  in  rup tu re  of the m a t e r i a l  as a r e s u l t  of r a r e -  
fact ion wave in te rac t ion  in the heated l ayer ,  to Q), we 
can wri te  the following express ion  for the case of un i -  
fo rm heating:  

w = e w Q = 2 a ( 7 - -  t) / Qp0- (6.3) 

If we a s s u m e  that the s t r eng th  a of a m a t e r i a l  is 
equal  to i ts  theore t i ca l  value a T, then for  n = 3 and 
k = 2 we have a T = P0C02/7 = 2p0Q/7 , and for 7 = 2 the 
p a r a m e t e r  w T = 0.56. In fact ,  the r ea l  s t reng th  of a 
m a t e r i a l  is cons ide rab ly  s m a l l e r  than i ts  theore t i ca l  
s t reng th  (one mus t ,  of cou r se ,  allow for i n c r e a s e s  in 
real strength as a result of decreases in loading time 

[8, 9]). I-lere we need only note that w << w T ~ 0.5, 

i.e. , that w << i, and that a mechanical momentum 

arises as a result of rupture of the material even with 

heating to energies e w considerably smaller than Q. 

The assumptions which lead to (2.1) and (3.3) 

are not valid in the range e ~ Q (in the former 

case the material cannot be considered gaseous; in the 

latter case one cannot neglect the momentum arising 
after encounter of the rarefaction waves and the possi- 
bility of numerous split-offs and dispersion of the en- 
tire material). The function ~ in this domain can be 

obtained by means of the aforementioned numerical 

log fs 
-2 -I 

Fig. 

computations of the entire gasdynamic picture of mo- 

tion. The possible divergence of the results of such 

computations (for large heats) from the approximate 
estimate (3.3) depends essentially not only on pa- 

rameters such as 7, X, w, but also on the equation of 

state of the material in the domain p < P0 (relief follows 

encounter of the rarefaction waves). For an equation of 
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state having the form assumed in w167 and 5, the mo- 
mentum (according to numerical computations of the 

hydrodynamic motion) is fairly close to (3.3) (the 

disparity for fs ~< 1 is not larger than 20-30~o, and 
diminishes with decreasing heating). In our computa- 
tions we assumed that stratification into two phases 
did not occur, and that rupture of the material took 
place with relief to p = 0. To determine ~ and I more 

precisely in the range f(m) ~ Q it is necessary to com- 

pute the motion of the material using a more exact 

equation of state and to allow for the possible formation 
of two phases l in addition, the moving material can 

take the fo rm of a mix tu re  of vapor  and drople ts  (or 
solid f r agmen t s )  not in t h e r m a l  equ i l i b r i um with each 
o ther ,  i . e . ,  having di f ferent  ve loc i t i e s  and t e m p e r a -  
tu re s .  

F r o m  now on we shal l  e s t ima te  the m o m e n t u m  f r o m  

(3.3) in the range  f s  ~> 1 and f rom (2.1) in  the range  

f s 4 1 .  
F r o m  Figs .  6 and 7 we see  that  the va lue  of the 

"spl i t -of f"  m o m e n t u m  I0 is  e s s e n t i a l l y  de t e rmined  by 
the t he rmodynamic  p r o p e r t i e s  of the heated and cold 
m a t e r i a l ,  while the boundary  where  such a m o m e n t u m  
sti lI  ex is t s  depends on the s t reng th  of the m a t e r i a I  
r e l a t ive  to "spl i t -of f . "  

w When laser radiation interacts with a sufficient- 

ly thick layer of material, the radiation flux diminishes 

with thickness as a result of absorption (see w This 

makes it necessary to alter formulas (2.1) and (3.3) to 
allow for nonuniform energy release with respect to 

depth. Assuming that the final dispersion velocity of 

each gas particle is independent of those of the other 

particles, we can rewrite formula (2.1) as 

m x 

1~ = ~ f l / - 2 ( / ( m ) - - Q ) d m "  (7.1) 
0 

Here  I s is the m o m e n t u m  of the gaseous  l aye r ;  f (m)  
is  the ene rgy  r e l e a s e d  pe r  un i t  m a s s  of the gas (which 
v a r i e s  with depth); m x is the m a s s  of the l ayer  of d i s -  
pe r sed  "gaseous"  m a t e r i a l ,  i . e . ,  the m a s s  up to the 
point  at which we cease  to employ fo rmula  (7.1) (as we 
shal l  show below,  m x t u rn s  out to be close to the m a s s  
m s of the l aye r  in which the energy  r e l e a s e d  exceeds 
the binding energy Q). Formula (7.1) was proposed by 

E. M. Rabinovich, who set m x = m s and X = 0.8. The 
coefficient X in the case of nonuniform heating corrects 

for energy redistribution not only during dispersion of 

the material into the void, but also during propagation 

of the compression and shock waves occasioned by the 
reaction force exerted by the dispersed material and 

propagating into the interior of the cold material. Re- 

distribution by the shock wave can be important only in 

the case of a strong wave (Ap >> P0Cg) which travels far 
and takes in a large mass (the '~rief ~ shock effect [I]). 

From now on we shall assume a relatively low de- 

gree of heating and shall neglect the redistribution of 

energy by the shock wave. Redistribution of energy 

during dispersion of the gas into the vacuum in the case 

of nonuniform heating of the mass results in a value of 

X different from 0.8. But this difference is small [4] in 

the case of an exponential function, for example; thus, 

in (1.2) for ~4 = eonst = i/m 0 in the case where 

m x >> m 0 the coeff ic ient  X ~ 0.6 (with prolonged hea t -  
ing,  when r ed i s t r i bu t i on  of ene rgy  by  the shock wave is  
s l ight  [4], and when energy is  r e d i s t r i bu t e d  only dur ing  
d i spe r s ion  into the vacuum).  Since we a re  i n t e r e s t ed  
p r i m a r i l y  in the case  where  m x ~ m0 or  m x << m0 (and 
f ina l ly ,  where  m x = 0), the gaseous  l a ye r  is  un i fo rmly  
heated,  and X can be taken equal to 0.8 as before .  

0./8 

-Z -I Otog ~s 1 

Fig. 9 

We note that according to [4] the momentum arising 

with dispersion of the gaseous layer varies little with 

increasing ratio of the time T of energy application to 

the characteristic layer dispersion time, i.e., our 
estimate of the momentum is valid even for a very 

thin layer of the above description. 

We can transform formula (3.3) in similar fashion: 

m w 

,o-- f ( .2t Vco*+~(v--l)/(,~) 
7n x 

Here I0 is  the m o m e n t u m  of the "spl i t -off"  l ayer ,  
and m w is the m a s s  of the l a ye r  to the point  of "spl i t -  
off, " i . e .  , the point at which heat ing is insuf f ic ien t  for 
r up t u r e  of the m a t e r i a l  to occur .  We note that  if we 
neglec t  the va r i a t i on  of the speed of sound c r e l a t ive  to 
co, we have 

Io - -  ( 'r  - -  i )  ( , % ,  - -  G : )  2co ' (7.3) 

where E x and E w are the energies present in the entire 

layer from m = 0 to m = m x and to m = m w, respec- 

tively; E w is the energy of the layer from ro_ x to mw. 
In computing the momentum I0 in the case of nonuni- 

form heating, we determined the parameter w and the 
mass m w of the"split-off" layer from condition (6.3) 

and the condition f(mw) = wQ, which we justified above 
for the case of a uniformly heated layer. According to 
the solution of the problem of thermoelastic deforma- 

tions (in the hydrodynamic approximation), the pres- 

sure distribution with exponential heating is 

P = t/2Po(e~ + e-~) f o r ~ > O  
p = 1/.po ( e~'~ -- e-+9 for  ~ < 0 

~ ( m - -  9ocot) /rno, ~l = (m-b, 9ocot) / m  o. (7.4) 

There is an abrupt (stepwise) decrease in pressure 

at the curve # = 0. The negative stress of maximum 
absolute value occurs at this moving point and is given by 

Pm~, = -- %-'~ (i -- exD (-- 2n~ /~n0)), (7.5) 
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It d i m i n i s h e s  wi th  t i m e  f r o m  0 to - p 0 / 2 .  I t  i s  c l e a r  
tha t  so lu t i on  (7.4), (7.5) i s  v a l i d  unt i l ,  a c c o r d i n g  
to  Eq.  (7.5),  P m i n  > - a .  F o r  P0 ~ 2~ the  o c c u r r e n c e  o r  
n o n o c c u r r e n c e  of  s p l i t - o f f ,  the  m a g n i t u d e  of  t h e  e x -  

p e l l e d  m a s s  m w ,  and the  v a l u e  of the  m o m e n t u m  I0 d e -  
pend  on r a n d o m  f a c t o r s .  On the  o t h e r  hand,  i f  P0 >> 2~, 

Y 

- -0 .8  

r---a8 

3 

/ 2 
F ig .  10 

then  no t  on ly  s i n g l e ,  but  m u l t i p l e  s p l i t - o H  and f r a g -  
m e n t a t i o n  of  the  m a t e r i a l  w i l l  o c c u r .  W i t h  an  e x p o n e n -  
t i a l  d e c r e a s e  of t he  d e g r e e  of h e a t i n g  wi th  dep th ,  the  

m a s s  m w wh ich  is  s p l i t - o f f  i s  a p p r o x i m a t e d  by  the  r e -  
l a t i on  

m~ -- m 0 in (E/wmoQ ) = m o In ( t / w  ]~) .  (7.6) 

The  e x a c t  v a l u e  of  t he  m a s s  m w h a s  l i t t l e  e f f e c t  on 
the  v a l u e  of  the  m o m e n t u m ,  s i n c e  a c c o r d i n g  to f o r m -  

u la  (7.3), t he  quan t i t y  w h i c h  d e t e r m i n e s  the  m o m e n t u m  

i s  t he  e n e r g y  a b s o r b e d  b e t w e e n  the  " t r a n s i t i o n "  po in t  
m x ( c l o s e  to the  " s u b l i m a t i o n "  po in t  m s )  and the  s p l i t -  

off  po in t  m w. In f ac t ,  e << P0Q, so  tha t  f ( m w )  << f ( m s )  = 
= Q, so  tha t  the  m a j o r  p o r t i o n  of  the  e n e r g y  beyond  the  

e v a p o r a t i o n  po in t  l i e s  b e t w e e n  the  po in t s  m x and m w. 
B e c a u s e  of t he  r a p i d  d e c r e a s e  in f ( m )  wi th  dep th ,  

c h a n g e s  in the  p o s i t i o n  of m w h a v e  l i t t l e  e f f e c t  on the  
m a g n i t u d e  of  t h i s  e n e r g y ,  and t h e r e f o r e  on the  v a l u e  of  

the  m o m e n t u m .  We d e t e r m i n e d  the  po in t  of t r a n s i t i o n  
f r o m  f o r m u l a  (7.1) to (7.2) on the  b a s i s  of  the  a s s u m p -  

t i on  of  con t inuous  m o m e n t u m  of an i n f i n i t e l y  th in  uni t  
l a y e r ,  i . e . ,  f r o m  the  a s s u m p t i o n  tha t  t he  i n t e g r a n d s  
of  (7.1) and (7.2) a r e  equa l ,  

(7 --1) / (m~) . (7.7) 
)L ](2 (] (m~) - -  0)  = 2 l/co-'-=7(.~--t)/(,,~) 

C o m p u t a t i o n s  u s i n g  Eq ,  (7,7) ( see  a l s o  F i g s .  6 and 

7) i n d i c a t e  t ha t  t he  e n e r g y  p e r  uni t  m a s s  f ( m x )  at  the  
" t r a n s i t i o n "  po in t  m x i s  c l o s e  to the  b ind ing  e n e r g y  Q. 

The  t o t a l  m o m e n t u m  I can  be  d e t e r m i n e d  by  add ing  the  

m o m e n t u m  I s of  the  l a y e r  of  m a t e r i a l  h e a t e d  to the  

" g a s e o u s "  s t a t e  (g iven  by  Eq .  (6.3)) to  t he  m o m e n t u m  
I0 of  t he  l a y e r  of  m a t e r i a l  p a r t i a l l y  v a p o r i z e d  o r  f r a g -  
m e n t e d  (g iven  by  Eq .  (7.1)) u n d e r  the  a s s u m p t i o n  tha t  
t h e s e  q u a n t i t i e s  a r e  i n d e p e n d e n t  (I = I s + I0). In r e a l i t y ,  
h o w e v e r ,  the  p r o c e s s e s  of  d i s p e r s i o n  of  the  two p h a s e s  
can  i n t e r a c t .  F o r  e x a m p l e ,  the  p r e s e n c e  of a p o s i t i v e  
p r e s s u r e  at  the  b o u n d a r y  wi th  t he  g a s e o u s  p h a s e  can  
h i n d e r  the  f o r m a t i o n  of  n e g a t i v e  s t r e s s e s  in the  c o n -  

d e n s e d  m e d i u m  {this f a c t  w a s  d r a w n  to  o u r  a t t e n t i o n  by  
G. F .  F f l i ppov ) .  Bu t  i f  the  s p e e d  of sound in t he  g a s -  
e o u s  l a y e r  i s  m a r k e d l y  h i g h e r ,  and if  i t s  t h i c k n e s s  i s  
m a r k e d l y  s m a l l e r  than  the  s p e e d  of  sound in ,  and the  
t h i c k n e s s  of ,  the  " c o l d "  l a y e r ,  t h e n  the  t i m e  of  d i s -  

p e r s i o n  o f  the  g a s e o u s  l a y e r  and the  t i m e  r e q u i r e d  f o r  
t he  p r e s s u r e  in i t  to d r o p  to n e g l i g i b l y  s m a l l  v a l u e s  a r e  
c o n s i d e r a b l y  s m a l l e r  t han  the  c h a r a c t e r i s t i c  t i m e  of 
g a s d y n a m i c  p r o c e s s e s  and of  " s p l i t - o f f "  in  t he  " c o l d "  
l a y e r .  T h e  m o m e n t u m  of  the  g a s e o u s  l a y e r  i s  s i m p l y  
t r a n s m i t t e d  t h r o u g h  the  r e g i o n  w h e r e  the  m a t e r i a l  i s  
h e a t e d  to e n e r g i e s  s m a l l e r  t han  Q. 

C o n v e r s e l y ,  i f  the  m a x i m u m  a m p l i t u d e  of  the  w a v e s  
p a s s i n g  t h r o u g h  the  " c o l d "  l a y e r  i s  s u f f i c i e n t l y  l a r g e  
as  c o m p a r e d  wi th  p0 c2, then  the  l a t t e r  i s  " p u m p e d "  

wi th  add i t i ona l  e n e r g y ,  wh ich  r e s u l t s  in a f u r t h e r  i n -  

c r e a s e  in m o m e n t u m .  H o w e v e r ,  we a r e  c o n c e r n e d  wi th  
r e l a t i v e l y  l o w  d e g r e e s  of hea t i ng  w h e r e  Ap ~< P0C02, and 
the  " g a s e o u s  l a y e r "  a f f e c t s  t he  co ld  l a y e r  n e g l i g i b l y ,  i f  
at  a l l .  

The results of our computations of the momenta for the case of an 
exponential function f(m) for constant values of the parameters charac- 
terizing the equation of state of the material (y and X) and its strength 
(w) appear in Figs. 8, 9, and 10 in the form of the "energy utilization" 
factor with allowance for "split-off' (~ = ~ 0 + gs ) and without allow- 
ance for it if-s) as functions of the parameter fs characterizing the de- 
gree of heating of the material. As we see from Fig. 8, the changes 
in momentum with changes in y are quite marked, so that the momen- 
tum of a nonuniformly heated layer can be used as a basis for drawing 
conclusions about the thermodynamic properties of the material. From 
Fig. 10 we see that with nonuniform heating the dynamic tensile 
strength (the change in w) affects not only the boundary at which the 
"split-off' momentum arises, but also the magnitude of this momen- 
tum. 

Curves 1 . . . . .  9 in Fig. 10 correspond to the following values of 
the parameters (y, w): 1 (3, 0.002), 2 (3, 0.0t5), 3 (2, 0.002), 4 (2, 0.0t), 
5 (t.67, 0.002), 6 (1.67, 0.015), 7 (3, 0.t), 8 (2, 0.1), 9 (t.67, 0.t). If the 
quantity y varies with heating (and therefore wRh depth), then in com-  
paring experimental and theoretical values we can determine only the 
average value of y for the heated layer, It is therefore desirable to 
conduct experiments under conditions of uniform heating. 

w The above notions concerning the production of a mechanical 
momentum at low specific energies and the relationship of its value to 
the equation of state, the strength of the material, and the applied 
energy required experimental verification, which was, in fact, ob- 
tained for several materials. We investigated the mechanical momen- 
tum, the dispersion pattern, the velocity of the split-offmateriaI, and 
the pressure arising directly in the material under a laser beam. The 
results of these experiments will be published later. We merely note 
at this time that the production of a "split-off' momentum predicted 
by one of the authors of the present paper and the quantitative estimate 
of this momentum obtained above were confirmed, 

It should be noted that the phenomenon under discussion is of in- 
terest not only as a source of data on the thermodynamic properties of 
a body. The effects of instantaneous heating by laser radiation and the 
subsequent dispersion of the material are of independent interest. They 
can be considered, for example, as a method of producing surface ex- 
plosions in a whole range of materials for the purpose of generating 
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shock and compression waves of very small length-something which is 
difficult to achieve by other methods. 

The authors are grateful to I. L, Zel'manov, A, I. Petmkhin, 
E. M. Rabinovich, and G. F. Filippov for their valuable comments. 
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